- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Givens, Kendra (2)
-
Phillips, Joshua L (2)
-
Ludwig, David (1)
-
Ludwig, David W (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Current deep-learning techniques for processing sets are limited to a fixed cardinality, causing a steep increase in computational complexity when the set is large. To address this, we have taken techniques used to model long-term dependencies from natural language processing and combined them with the permutation equivariant architecture, Set Transformer (STr). The result is Set Transformer XL (STrXL), a novel deep learning model capable of extending to sets of arbitrary cardinality given fixed computing resources. STrXL's extension capability lies in its recurrent architecture. Rather than processing the entire set at once, STrXL processes only a portion of the set at a time and uses a memory mechanism to provide additional input from the past. STrXL is particularly applicable to processing sets of high-throughput sequencing (HTS) samples of DNA sequences as their set sizes can range into hundreds of thousands. When tasked with classifying HTS prairie soil samples and MNIST digits, results show that STrXL exhibits an expected memory size-accuracy trade-off that scales proportionally with the complexity of downstream tasks, but, unlike STr, is capable of generalizing to sets of arbitrary cardinality.more » « less
-
Givens, Kendra; Ludwig, David W; Phillips, Joshua L (, Florida Online Journals - The Library Press at the University of Florida)Current deep-learning techniques for processing sets are limited to a fixed cardinality, causing a steep increase in computational complexity when the set is large. To address this, we have taken techniques used to model long-term dependencies from natural language processing and combined them with the permutation equivariant architecture, Set Transformer (STr). The result is Set Transformer XL (STrXL), a novel deep learning model capable of extending to sets of arbitrary cardinality given fixed computing resources. STrXL’s extension capability lies in its recurrent architecture. Rather than processing the entire set at once, STrXL processes only a portion of the set at a time and uses a memory mechanism to provide additional input from the past. STrXL is particularly applicable to processing sets of highthroughput sequencing (HTS) samples of DNA sequences as their set sizes can range into hundreds of thousands. When tasked with classifying HTS prairie soil samples and MNIST digits, results show that STrXL exhibits an expected memory size-accuracy trade-off that scales proportionally with the complexity of downstream tasks, but, unlike STr, is capable of generalizing to sets of arbitrary cardinality.more » « less
An official website of the United States government

Full Text Available